Deep Learning for Software Defect Prediction: A Survey

Safa Omri

Karlsruhe Institute of Technology
Karlsruhe, Germany
safa.omri@kit.edu

ABSTRACT

Software fault prediction is an important and beneficial practice
for improving software quality and reliability The ability to predict
which components in a large software system are most likely to
contain the largest numbers of faults in the next release helps to
better manage projects, including early estimation of possible re-
lease delays, and affordably guide corrective actions to improve the
quality of the software. However, developing robust fault predic-
tion models is a challenging task and many techniques have been
proposed in the literature. Traditional software fault prediction
studies mainly focus on manually designing features (e.g. complex-
ity metrics), which are input into machine learning classifiers to
identify defective code. However, these features often fail to capture
the semantic and structural information of programs. Such infor-
mation is needed for building accurate fault prediction models. In
this survey, we discuss various approaches in fault prediction, also
explaining how in recent studies deep learning algorithms for fault
prediction help to bridge the gap between programs’ semantics and
fault prediction features and make accurate predictions.

KEYWORDS

deep learning, software testing, software defect prediction, machine
learning, software quality assurance

1 INTRODUCTION

Nowadays, software quality assurance is overall the most expensive
activity for nearly all software developing companies [43], since
team members need to spend a significant amount of their time
inspecting the entire software in detail rather than, for example,
implementing new features. Software quality assurance activities,
such as source code inspection, assist developers in finding po-
tential bugs and allocating their testing efforts. They have a great
influence on producing high quality reliable software. Numerous
research studies have analyzed software fault prediction techniques
to help prioritize software testing and debugging. Software fault
prediction is a process of building classifiers to anticipate which
software modules or code areas are most likely to fail. Most of these
techniques focus on designing features (e.g. complexity metrics)
that correlate with potentially defective code. Object-oriented met-
rics were initially suggested by Chidamber and Kemerer [7]. Basili
et al. [3] and Briand et al. [5] were among the first to use such
metrics to validate and evaluate fault-proneness. Subramanyam
and Krishnan [44] and Tang et al. [46] showed that these metrics
can be used as early indicators of externally visible software quality.
D’Ambros et al. have compared popular fault prediction approaches
for software systems [10], namely, process metrics [31], previous
faults [24] and source code metrics [3]. Nagappan et al. [34] pre-
sented empirical evidence that code complexity metrics can predict

Carsten Sinz
Karlsruhe Institute of Technology
Karlsruhe, Germany
carsten.sinz@kit.edu

post-release faults. Our previous work [37] takes into consideration
not only code complexity metrics but also the faults detected by
static analysis tools to build accurate pre-release fault predictors.
Numerous research studies have analyzed code churn (number of
lines of code added, removed, etc.) as a variable for predicting faults
in large software systems [21, 33, 38]. All these research studies
have gone into carefully designing features which are able to dis-
criminate defective code from non-defective code such as code size,
code complexity (e.g. Halstead, McCabe, CK features), code churn
metrics (e.g. the number of code lines changed), or process metrics.
Most defect prediction approaches consider defect prediction as a
binary classification problem that can be solved by classification
algorithms, e.g., Support Vector Machines (SVM), Naive Bayes (NB),
Decision Trees (DT), or Neural Networks (NN). Such approaches
simply classify source code changes into two categories: fault-prone
or not fault-prone.

Those approaches, however, do not sufficiently capture the syn-
tax and different levels of semantics of source code, which is an
important capability for building accurate prediction models. Specif-
ically, in order to make accurate predictions, features need to be dis-
criminative: capable of distinguishing one instance of code region
from another. The existing traditional features cannot distinguish
code regions with different semantics but similar code structure. For
example, in Figure 1, there are two Java files, both of which contain
a for statement, a remove function and an add function. The only
difference between the two files is the order of the remove and add
function. File2.java will produce a NoSuchElementException when
the function is called with an empty queue. Using traditional fea-
tures to represent these two files, their feature vectors are identical,
because these two files have the same source code characteristics in
terms of lines of code, function calls, raw programming tokens, etc.
However, the semantic content is different. Features that can distin-
guish such semantic differences should enable the building of more
accurate prediction models. To bridge the gap between programs’
semantic information and features used for defect prediction, some
approaches propose to leverage a powerful representation-learning
algorithm, namely deep learning, to capture the semantic repre-
sentation of programs automatically and use this representation to
improve defect prediction.

In this survey, we review the different deep learning technologies
used in software quality assurance to predict faults, and provide a
survey on the state-of-the-art in deep learning methods applied to
software defect prediction.

2 SOFTWARE DEFECT PREDICTION
PROCESS
Fault prediction is an active research area in the field of software

engineering. Many techniques and metrics have been developed to
improve fault prediction performance. In recent decades, numerous

static void function (Queue myQueue) {
inti;
for (i=0;i<10; i++){

static void function (Queue myQueue) {
inti;
for (i=0;i<10; i++){

myQueue.add(i); myQueue.remove();

myQueue.remove(); myQueue.add(i);

}

© @ N o ;AW N o
© @ N o sw N =

}

File1.java File2.java

Figure 1: A motivating example: File2. java will exhibit an
exception when the function is called with an empty queue.

studies have examined the realm of software fault prediction. Figure
2 briefly shows the history of software fault prediction studies in
about the last 20 years.

Regularized
Gradient Boosting
(RGBoost)
LST™™
Convolutional Neural
" Network (CNN) Improved Transfer
;‘,’;;I'C"“::“jéa"eg Deep Belief Network 124] omponent Analysis
Nl (DBN) (TCA4)
8 [44) 43)
g Convolutional
o Neural Network Decision Tree (DT)
N (CNN) [13] 11, [20] Logstic Regression
[33]
Neural Network Transfer Learning:
9] Naive Bayes (NB) Transfer Component
(48] Analysis (TCA)
Tree-Based Machine 1]
Learning
Algorithms [20], [42]
Logistic Regression
Support Vector (3]
8 Change <[):a7?smcauoﬂ Mafme (SVM)
(o]
8 Decision Tree (OT) | | Nearest Neighbor
4] Filter
a [41]
Logistc Regression
2n Bayesian Belief
Network
m
Logistic Regression | | Regression Models
&) [30)
n
o
g Classification &
Logistic regression
- &

Within-Project Defect Prediction Cross-Project Defect Prediction

Figure 2: History of Software Defect Prediction

As the process shows in Figure 3, the first step is to collect
source code repositories from software archives. The second step
is to extract features from the source code repositories and the
commits contained therein. There are many traditional features
defined in past studies, which can be categorized into two kinds:
code metrics (e.g., McCabe features and CK features) and process
metrics (e.g., change histories). The extracted features represent the
train and test dataset. To select the best-fit defect prediction model,
the most commonly used method is called k-fold cross-validation
that splits the training data into k groups to validate the model on
one group while training the model on the k — 1 other groups, all
of this k times. The error is then averaged over the k runs and is
named cross-validation error. The diagnostics of the model is based
on these features: (1) Bias: the bias of a model is the difference
between the expected prediction and the correct model that we
try to predict for given data points. (2) Variance: the variance of
a model is the variability of the model prediction for given data
points. (3) Bias/variance tradeoff : the simpler the model, the higher
the bias, and the more complex the model, the higher the variance.

Safa Omri and Carsten Sinz

Metric | Formula Interpretation
TP+TN Overall performance
Accuracy | TpiTNTFPAFN | of model
.. P How accurate the positive
Precision TP+FP predictions are
Recall P Coverage of actual
TP+FN positive sample
F1 score TP Hybrid metric useful for
2TP+FP+FN | unbalanced classes

Table 1: Common metrics used to assess the performance of
classification models

Figure 4 shows a brief summary of how underfitting, overfitting
and a suitable fit looks like for the three commonly used techniques
regression, classification and deep learning. Once the model has
been chosen, it is trained on the entire dataset and tested on the test
dataset. Most defect prediction approaches take defect prediction
as a binary classification problem. After fitting the models, the
test data is fed into the trained classifier (the best-fit prediction
model), which can predict whether the files are buggy or clean.
Afterwards, in order to assess the performance of the selected
model, quality metrics are computed. To have a more complete
picture when assessing the performance of a model, a confusion
matrix is used. It is defined as shown in Figure 5. We summarize
the metrics for the performance of classification models in Table 1.

2.1 Within-Project Defect Prediction

Within-project defect prediction uses training data and test data that
are from the same project. Many machine learning algorithms have
been adopted for within-project defect prediction, including Sup-
port Vector Machines (SVM) [12], Bayesian Belief Networks [1],
Naive Bayes (NB) [53], Decision Trees (DT) [13], [22], [49], Neural
Networks (NN) [11], or Dictionary Learning [17]. Elish et al. [12]
evaluated the feasibility of SVM in predicting defect-prone software
modules, and they compared SVM against eight statistical and ma-
chine learning models on four NASA datasets. Their results showed
that SVM is generally better than, or at least competitive with other
models, e.g., Logistic Regression, Bayesian techniques, etc. Amasaki
et al. [1] used a Bayesian Belief Network to predict the final quality
of a software product. They evaluated their approach on a closed
project, and the results showed that their proposed method can
predict bugs that the Software Reliability Growth Model (SRGM)
cannot handle. Wang et al. [49] and Khoshgoftaar et al. [22] exam-
ined the performance of tree-based machine learning algorithms
on defect prediction. Their results indicate that tree-based algo-
rithms can generate good predictions. Tao et al. [53] proposed a
Naive Bayes based defect prediction model, and they evaluated the
proposed approach on 11 datasets from the PROMISE defect data
repository. Their experimental results showed that the Naive Bayes
based defect prediction models could achieve better performance
than J48 (decision tree) based prediction models. Jing et al. [17]
introduced the dictionary learning technique to defect prediction.
Their cost-sensitive dictionary learning based approach could sig-
nificantly improve defect prediction in their experiments. Wang et
al. [52] used a Deep Belief Network (DBN) to generate semantic

Deep Learning for Software Defect Prediction: A Survey

-I) %%
02T e
D52 L

Software Archives

* Train Data.

¥

Models Tranmng} —>£ Classifier } R — Prgsia(i:j::::d

Rl

f—

©

Features Extraction

® ®
Data Preparation

Models Training

Best-Fit Prediction Model Prediction and Evaluation >

Figure 3: Software Defect Prediction Process

Underfitting Just right Overfitting

« High training error
« Training error close to test
error

« High bias

« Training error slightly lower
than test error

« Very low traiing error
« Training error much lower
than test error
« High variance

Symptoms

Regression
illustration

Classification
illustration

Deep learning
illustration

« Complexify model
« Add more features
« Train longer

« Perform regularization

Possible remedies
« Get more data

Figure 4: Fitting Model Diagnostics [2]

Predicted class
¥

FN
False Negatives
Type Il error

TP
True Positives
Actual class
FP
False Positives
Type | error

TN
True Negatives

Figure 5: Confusion Matrix

features for file-level defect prediction tasks. In Wang et al’s work
[52], to evaluate the performance of DBN-based semantic features
as well as traditional features, they built prediction models by us-
ing three typical machine learning algorithms, i.e., ADTree, Naive
Bayes, and Logistic Regression. Their experimental results show
that the learned DBN-based semantic features consistently outper-
form the traditional defect prediction features on these machine
learning classifiers. Most of the above approaches are designed
for file-level defect prediction. For change-level defect prediction,

Mockus and Weiss [30] and Kamei et al. [19] predicted the risk of
a software change by using change measures, e.g., the number of
subsystems touched, the number of files modified, the number of
added lines, and the number of modification requests. Kim et al.
[23] used the identifiers in added and deleted source code and the
words in change logs to classify changes as being fault-prone or
not fault-prone. Jiang et al. [16] and Xia et al. [54] built separate
prediction models with characteristic features and meta features
for each developer to predict software defects in changes. Tan et al.
[45] improved change classification techniques and proposed online
defect prediction models for imbalanced data. Their approach uses
time sensitive change classification to address the incorrect evalua-
tion introduced by cross-validation. McIntosh et al. [28] studied the
performance of change-level defect prediction as software systems
evolve. Change classification can also predict whether a commit
is buggy or not [39], [41], [14]. In Wang et al’s work [52], they
also compare the DBN-based semantic features with the widely
used change-level defect prediction features, and ther results sug-
gest that the DBN-based semantic features can also outperform
change-level features.

However, sufficient defect data is often unavailable for many
projects and companies. This raises the need for cross-project bug
localization, i.e., the use of data from one project to help locate bugs
in another project.

2.2 Cross-Project Defect Prediction

Due to the lack of data, it is often difficult to build accurate models
for new projects. Recently, more and more papers studied the cross-
project defect prediction problem, where the training data and test
data come from different projects.

Some studies ([25], [29], [57]) have been done on evaluating
cross-project defect prediction against within-project defect predic-
tion and show that cross-project defect prediction is still a challeng-
ing problem. He et al. [15] showed the feasibility to find the best
cross-project models among all available models to predict defects
on specific projects. Turhan et al. [48] proposed a nearest-neighbor
filter to improve cross-project defect prediction. Zimmermann et al.
[57] evaluated the performance of cross-project defect prediction
on 12 projects and their 622 combinations. They found that the

defect prediction models at that time could not adapt well to cross-
project defect prediction. Li et al. [26] proposed defect prediction
via convolutional neural networks (DP-CNN). Their work differs
from the above-mentioned approaches in that they utilize deep
learning technique (i.e., CNN) to automatically generate discrimi-
native features from source code, rather than manually designing
features which can capture semantic and structural information of
programs. Their features lead to more accurate predictions. The
state-of-the-art cross-project defect prediction is proposed by Nam
et al. [35], who adopted a state-of-the-art transfer learning tech-
nique called Transfer Component Analysis (TCA). They further
improved TCA as TCA+ by optimizing TCA’s normalization pro-
cess. They evaluated TCA+ on eight open-source projects, and
the results show that their approach significantly improves cross-
project defect prediction. Xia et al. [54] proposed HYDRA, which
leverages a genetic algorithm and ensemble learning (EL) to im-
prove cross-project defect prediction. HYDRA requires massive
training data and a portion (5%) of labeled data from test data to
build and train the prediction models. TCA+ [35] and HYDRA [54]
are the two state-of-the-art techniques for cross-project defect pre-
diction. However, in Wang et al’s work [51], they only use TCA+
as baseline for cross-project defect prediction. This is because HY-
DRA requires that the developers manually inspect and label 5%
of the test data, while in real-world practice, it is very expensive
to obtain labeled data from software projects, which requires the
developers’ manually inspection, and the ground truth might not
be guaranteed. Most of the above existing cross-project approaches
are examined for file-level defect prediction only. Recently, Kamei
et al. [18] empirically studied the feasibility of change level defect
prediction in a cross-project context. Wang et al. [51] examines
the performance of Deep Belief Network (DBN)-based semantic
features on change-level cross-project defect prediction tasks. The
main differences between this and existing approaches for within-
project defect prediction and cross-project defect prediction are as
follows. First, existing approaches to defect prediction are based on
manually encoded traditional features which are not sensitive to
the programs’ semantic information, while Wang et al’s approach
automatically learns the semantic features using a DBN and uses
these features to perform defect prediction tasks. Second, since
Wang et al’s method requires only the source code of the training
and test projects, it is suitable for both within-project and cross-
project defect prediction. The semantic features can capture the
common characteristics of defects, which implies that the semantic
features trained from one project can be used to predict a different
project, and thus is applicable in cross-project defect prediction.

Deep learning-based approaches require only the source code
of the training and test projects, and are therefore suitable for
both within-project and cross-project defect prediction. In the next
session, we explain, based on recent research, how effective and
accurate fault-prediction models developed using deep learning
techniques are.

3 DEEP LEARNING IN SOFTWARE DEFECT
PREDICTION

Recently, deep learning algorithms have been adopted to improve
research tasks in software engineering. The most popular deep

Safa Omri and Carsten Sinz

learning techniques are: Deep Belief Networks (DBN), Recurrent
Neural Networks, Convolutional Neural Networks and Long Short
Term Memory (LSTM), see Table 2. Yang et al. [56] propose an
approach that leverages deep learning to generate new features
from existing ones and then use these new features to build defect
prediction models. Their work was motivated by the weaknesses of
logistic regression (LR), which is that LR cannot combine features
to generate new features. They used a Deep Belief Network (DBN)
to generate features from 14 traditional change level features, in-
cluding the following: number of modified subsystems, modified
directories, modified files, code added, code deleted, lines of code
before/after the change, files before and after the change, and sev-
eral features related to developers’ experience [56]. The work of
Wang et al. [51] differs from the above study mainly in three as-
pects. First, they use a DBN to learn semantic features directly from
source code, while Yang et al. use relations among existing features.
Since the existing features cannot distinguish between many se-
mantic code differences, the combination of these features would
still fail to capture semantic code differences. For example, if two
changes add the same line at different locations in the same file, the
traditional features cannot distinguish between the two changes.
Thus, the generated new features, which are combinations of the
traditional features, would also fail to distinguish between the two
changes. How to explain deep learning results is still a challenging
question in the Al community. To interpret deep learning models,
Andrej et al. [20] used character level language models as an inter-
pretable testbed to explain the representations and predictions of a
Recurrent Neural Network (RNN). Their qualitative visualization
experiments demonstrate that RNN models could learn powerful
and often interpretable long-range interactions from real-world
data. Radford et al. [42] focus on understanding the properties of
representations learned by byte-level recurrent language models for
sentiment analysis. Their work reveals that there exists a sentiment
unit in the well-trained RNNs (for sentiment analysis) that has a
direct influence on the generative process of the model. Specifically,
simply fixing its value to be positive or negative can generate sam-
ples with the corresponding positive or negative sentiment. The
above studies show that to some extent deep learning models are
interpretable. However, these two studies focused on interpreting
RNNSs on text analysis. Wang et al. [51] leverages a different deep
learning model, Deep Belief Networks (DBN), to analyze the ASTs
of source code. The DBN adopts different architectures and learning
processes from RNNs. For example, an RNN (e.g., LSTM) can, in
principle, use its memory cells to remember long-range information
that can be used to interpret data it is currently processing, while a
DBN does not have such memory cells. Thus, it is unknown whether
DBN models share the same properties (w.r.t interpretability) as
RNNs. Many studies used a topic model [4] to extract semantic
features for different tasks in software engineering ([6], [36], [55]).
Nguyen et al. [36] leveraged a topic model to generate features
from source code for within-project defect prediction. However,
their topic model handles each source file as an unordered token
sequence. Thus, the generated features cannot capture structural
information in a source file. A just-in-time defect prediction tech-
nique was proposed by Kamei et al. which leverages the advantages
of Logistic Regression (LR) [19]. However, logistic regression has
two weaknesses. First, in logistic regression, the contribution of

Deep Learning for Software Defect Prediction: A Survey

and classification tasks.

- Less computation power

of software metrics

Techniques Definition Advantages Drawbacks Ref.
RNNs are called recurrent because - Possibility of processing - Sl'ow computation '
input of any length - Difficulty of accessing
they perform the same task for
- Model size not increasing information from a
RNN every element of a sequence, o . . [50]
. . with size of the input long time ago
with the output being depended on . . .
the previous computations - Computation takes into - Cannot consider any future
P ’ account historical information input for the current state
Al hort- LSTM,
one § Aort term memory (LSTM) L . - It takes longer to train
network is a type of RNN model - Remembering information .
LSTM - It requires more memory [8], [9]
that avoids the vanishing gradient for a long periods of time to train
problem by adding *forget’ gates.
CNNis a cl f d I network, .
. 1§ & class of deep neural networ - It automatically detects the .
it uses convolution in place of general . . - need a lot of training data.
CNN) s important features without any . . [26], [32], [40]
matrix multiplication in at least one - - High computational cost.
. human supervision.
of their layers.
- Computationally expensive
. . . to train
A stacked autoencoder is a neural - Possible use of pre-trained layers .
. - Extremely uninterpretable
network consist several layers of sparse from another model, to apply . .
Stacked . . - The underlying math is more
autoencoders where output of each hidden | transfer learning . [27], [47]
Auto-Encoder complicated
layer is connected to the input of the - It does not require labeled inputs .
. . : - Prone to overfitting, though
successive hidden layer. to enable learning . i
this can be mitigated
via regularization
- Onl d; 11 labeled dataset
DBN is an unsupervised probabilistic ny needs a sma’ fabeled ataset | It overlooks the structural
DBN . . - It is a solution to the .) [52]
deep learning algorithm. o . information of programs
vanishing gradient problem
- It cannot combine different
LR is used to describe data and features
Logistic to explain the relationship between - Easy to implement to generate new features. [19]
Regression one dependent binary variable and - Very efficient to train - It performs well only when
independent variables. input features and output
labels are in linear relation
SVM is a supervised learning model. - Using different kernel function it Not suitable for large number
SVM It can be used for both regression gives better prediction result 8 [12]

Decision Tree

DT is a decision support tool that uses a
tree-like graph or model of decisions
and their possible consequences.

Tree based methods empower
predictive models with high
accuracy, stability and

ease of interpretation.

- Construction of decision tree
is complex

[13], [22], [49]

Table 2: Common machine learning and deep learning techniques used in software defect prediction

each feature is calculated independently, which means that LR can-
not combine different features to generate new ones. For example,
given two features x and y, if x X y is a highly relevant feature,
it is not enough to input only x and y because logistic regression
cannot generate the new feature x X y. Second, logistic regression
performs well only when input features and output labels are in
linear relation. Due to these two weaknesses, the selection of in-
put features becomes crucial when using logistic regression. The
bad selection of features may result in a non-linear relation for
output labels, leading to bad training performance or even train-
ing failure. This severe problem leads some studies to adopt Deep
Belief Network (DBN), which is one of the state-of-the-art deep
learning approaches. The biggest advantage of DBN, as shown in
Table 2, over logistic regression is that DBNs can generate a more
expressive feature set from the initial feature set. We summarizes
in Table 2 the most commonly used machine learning and deep
learning techniques in software defect prediction.

4 CONCLUSION

With the ever-increasing scale and complexity of modern software,
software reliability assurance has become a significant challenge.

To enhance the reliability of software, we consider predicting poten-
tial code defects in software implementations a beneficial direction,
which has the potential to dramatically reduce the workload of
software maintenance. Specifically, we see the highest potential
in a defect prediction framework which utilizes deep learning al-
gorithms for automated feature generation from source code with
the semantic and structural information preserved. Moreover, our
survey corroborates the feasibility of deep learning techniques in
the filed of program analysis.

REFERENCES

[1] Sousuke Amasaki, Yasunari Takagi, Osamu Mizuno, and Tohru Kikuno. 2003. A
Bayesian Belief Network for Assessing the Likelihood of Fault Content. In Pro-
ceedings of the 14th International Symposium on Software Reliability Engineering.

[2] Afshine Amidi. 2018. cheatsheet-machine-learning-tips-and-tricks.
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-
tips-and-tricks

[3] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. 1996. A Validation of
Object-Oriented Design Metrics As Quality Indicators. IEEE Trans. Softw. Eng.
(1996).

[4] David M. Blei, Andrew Y. Ng, and Michael L. Jordan. 2003. Latent Dirichlet
Allocation. J. Mach. Learn. Res. (2003).

[5] Lionel C. Briand, Jiirgen Wiist, Stefan V. Ikonomovski, and Hakim Lounis. 1999.
Investigating Quality Factors in Object-oriented Designs: An Industrial Case

[10

[11

[12

[13

(14

[15]

[16

[17

=
K

[19

[20

[21]

[22

[23]

[24

[25

[32

Study. In Proceedings of the 21st International Conference on Software Engineering.
Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, and Ahmed E. Has-
san. 2012. Explaining Software Defects Using Topic Models. In Proceedings of the
9th IEEE Working Conference on Mining Software Repositories.

S. R. Chidamber and C. F. Kemerer. 1994. A Metrics Suite for Object Oriented
Design. IEEE Trans. Softw. Eng. (1994).

Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya
Ghose, Taeksu Kim, and Chul-Joo Kim. 2019. Lessons Learned from Using a Deep
Tree-Based Model for Software Defect Prediction in Practice. In Proceedings of
the 16th International Conference on Mining Software Repositories.

Khanh Hoa Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy,
Aditya K. Ghose, Taeksu Kim, and Chul-Joo Kim. 2018. A deep tree-based model
for software defect prediction. ArXiv (2018).

Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating Defect
Prediction Approaches: A Benchmark and an Extensive Comparison. Empirical
Softw. Engg. (2012).

Elhampaikari, Michael M.richter, and Guentherruhe. 2012. Defect prediction
using case-based reasoning: an attribute weighting technique based upon sensi-
tivity analysis in neural network. International Journal of Software Engineering
and Knowledge Engineering (2012).

Karim O. Elish and Mahmoud O. Elish. 2008. Predicting Defect-Prone Software
Modules Using Support Vector Machines. J. Syst. Softw. (2008).

N. Gayatri, Nickolas Savarimuthu, and A. Reddy. 2010. Feature Selection Us-
ing Decision Tree Induction in Class level Metrics Dataset for Software Defect
Predictions. Lecture Notes in Engineering and Computer Science (2010).

Andrew Habib and Michael Pradel. 2019. Neural Bug Finding: A Study of Oppor-
tunities and Challenges. CoRR (2019).

Z. He, F. Peters, T. Menzies, and Y. Yang. 2013. Learning from Open-Source
Projects: An Empirical Study on Defect Prediction. In ACM IEEE International
Symposium on Empirical Software Engineering and Measurement.

Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized Defect Prediction. In
Proceedings of the 28th IEEE/ACM International Conference on Automated Software
Engineering.

Xiao-Yuan Jing, Shi Ying, Zhi-Wu Zhang, Shan-Shan Wu, and Jin Liu. 2014.
Dictionary Learning Based Software Defect Prediction. In Proceedings of the 36th
International Conference on Software Engineering.

Yasutaka Kamei, Takafumi Fukushima, Shane Mcintosh, Kazuhiro Yamashita,
Naoyasu Ubayashi, and Ahmed E. Hassan. 2016. Studying Just-in-Time Defect
Prediction Using Cross-Project Models. Empirical Softw. Engg. (2016).

Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2013. A Large-Scale Empirical Study of
Just-in-Time Quality Assurance. IEEE Trans. Softw. Eng. (2013).

Andrej Karpathy, Justin Johnson, and Fei Fei Li. 2015. Visualizing and Under-
standing Recurrent Networks. Cornell Univ. Lab. (2015).

T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan. 1996. Detec-
tion of Software Modules with High Debug Code Churn in a Very Large Legacy
System. In Proceedings of the The Seventh International Symposium on Software
Reliability Engineering.

Taghi M. Khoshgoftaar and Naeem Seliya. 2002. Tree-Based Software Quality
Estimation Models For Fault Prediction. In Proceedings of the 8th International
Symposium on Software Metrics.

Sunghun Kim, E. James Whitehead, and Yi Zhang. 2008. Classifying Software
Changes: Clean or Buggy? IEEE Trans. Softw. Eng. (2008).

Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas
Zeller. 2007. Predicting Faults from Cached History. In Proceedings of the 29th
International Conference on Software Engineering.

Barbara A. Kitchenham, Emilia Mendes, and Guilherme H. Travassos. 2007. Cross
versus Within-Company Cost Estimation Studies: A Systematic Review. IEEE
Trans. Softw. Eng. (2007).

J. Li, P. He, J. Zhu, and M. R. Lyu. 2017. Software Defect Prediction via Convo-
lutional Neural Network. In IEEE International Conference on Software Quality,
Reliability and Security (QRS).

C. Manjula and Lilly Florence. 2019. Deep neural network based hybrid approach
for software defect prediction using software metrics. Cluster Computing (2019).
Shane McIntosh and Yasutaka Kamei. 2018. Are Fix-Inducing Changes a Mov-
ing Target? A Longitudinal Case Study of Just-in-Time Defect Prediction. In
Proceedings of the 40th International Conference on Software Engineering.

Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayse Bener.
2010. Defect prediction from static code features: Current results, limitations,
new approaches. Autom. Softw. Eng. (2010).

A. Mockus and D. M. Weiss. 2000. Predicting risk of software changes. Bell Labs
Technical Journal (2000).

Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In Proceedings of the 30th International Conference on Software
Engineering.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In

[33

=
&

[44

[45]

[50]
[51]

[52]

Safa Omri and Carsten Sinz

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.
Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn
Measures to Predict System Defect Density. In Proceedings of the 27th International
Conference on Software Engineering.

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining Metrics
to Predict Component Failures. In Proceedings of the 28th International Conference
on Software Engineering.

Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer Defect Learn-
ing. In Proceedings of the International Conference on Software Engineering.
Tung Thanh Nguyen, Tien N. Nguyen, and Tu Minh Phuong. 2011. Topic-Based
Defect Prediction (NIER Track). In Proceedings of the 33rd International Conference
on Software Engineering.

S. Omri, P. Montag, and C. Sinz. 2018. Static Analysis and Code Complexity
Metrics as Early Indicators of Software Defects. Journal of Software Engineering
and Applications (2018).

S. Omri, C. Sinz, and P. Montag. [n.d.]. An Enhanced Fault Prediction Model
for Embedded Software based on Code Churn, Complexity Metrics, and Static
Analysis Results. ICSEA 2019 : The Fourteenth International Conference on
Software Engineering Advances.

Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. VCCFinder: Finding Potential
Vulnerabilities in Open-Source Projects to Assist Code Audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
Anh Phan, Le Nguyen, and Lam Bui. 2018. Convolutional Neural Networks over
Control Flow Graphs for Software Defect Prediction. (2018).

Lutz Prechelt and Alexander Pepper. 2014. Why Software Repositories Are Not
Used for Defect-Insertion Circumstance Analysis More Often: A Case Study. Inf.
Softw. Technol. (2014).

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. 2017. Learning to Generate
Reviews and Discovering Sentiment. (2017).

R. Rana, M. Staron, J. Hansson, and M. Nilsson. 2014. Defect prediction over
software life cycle in automotive domain state of the art and road map for future.
In 9th International Conference on Software Engineering and Applications (ICSOFT-
EA).

Ramanath Subramanyam and M. S. Krishnan. 2003. Empirical Analysis of CK Met-
rics for Object-Oriented Design Complexity: Implications for Software Defects.
IEEE Trans. Softw. Eng. (2003).

Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online Defect
Prediction for Imbalanced Data. In Proceedings of the 37th International Conference
on Software Engineering.

Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen. 1999. An Empirical Study
on Object-Oriented Metrics. In Proceedings of the 6th International Symposium on
Software Metrics.

Haonan Tong, Bin Liu, and Shihai Wang. 2017. Software Defect Prediction Using
Stacked Denoising Autoencoders and Two-stage Ensemble Learning. Information
and Software Technology (2017).

Burak Turhan, Tim Menzies, Ayundefinede B. Bener, and Justin Di Stefano. 2009.
On the Relative Value of Cross-Company and within-Company Data for Defect
Prediction. Empirical Softw. Engg. (2009).

Jun Wang, Beijun Shen, and Yuting Chen. [n.d.]. Compressed C4.5 Models
for Software Defect Prediction. In Proceedings of the 2012, 12th International
Conference on Quality Software.

Jinyong Wang and Ce Zhang. 2018. Software reliability prediction using a deep
learning model based on the RNN encoder-decoder. Reliab. Eng. Syst. Saf. (2018).
S. Wang, T. Liu, J. Nam, and L. Tan. 2018. Deep Semantic Feature Learning for
Software Defect Prediction. IEEE Transactions on Software Engineering (2018).
Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically Learning Semantic
Features for Defect Prediction. In Proceedings of the 38th International Conference
on Software Engineering.

T. Wang and W. Li. [n.d.]. Naive Bayes Software Defect Prediction Model. In 2010
International Conference on Computational Intelligence and Software Engineering.
X. Xia, D. Lo, X. Wang, and X. Yang. 2016. Collective Personalized Change
Classification With Multiobjective Search. IEEE Transactions on Reliability (2016).
Xihao Xie, Wen Zhang, Ye Yang, and Qing Wang. 2012. DRETOM: Developer
Recommendation Based on Topic Models for Bug Resolution. In Proceedings of
the 8th International Conference on Predictive Models in Software Engineering.
Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep Learn-
ing for Just-in-Time Defect Prediction. In Proceedings of the IEEE International
Conference on Software Quality, Reliability and Security.

Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. 2009. Cross-Project Defect Prediction: A Large Scale Experi-
ment on Data vs. Domain vs. Process. In Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT.

