which components in a large software system are most likely to fail. Most of these studies mainly focus on manually designing features (e.g. complexity metrics), which are input into machine learning classifiers to identify defective code. However, these features often fail to capture the semantic and structural information of programs. Such information is needed for building accurate fault prediction models. In this survey, we discuss various approaches in fault prediction, also explaining how in recent studies deep learning algorithms for fault prediction help to bridge the gap between programs’ semantics and fault prediction features and make accurate predictions.

KEYWORDS
deep learning, software testing, software defect prediction, machine learning, software quality assurance

1 INTRODUCTION

Nowadays, software quality assurance is overall the most expensive activity for nearly all software developing companies [43], since team members need to spend a significant amount of their time inspecting the entire software in detail rather than, for example, implementing new features. Software quality assurance activities, such as code inspection, assist developers in finding potential bugs and allocating their testing efforts. They have a great influence on producing high quality reliable software. Numerous research studies have analyzed software fault prediction techniques to help prioritize software testing and debugging. Software fault prediction is a process of building classifiers to anticipate which software modules or code areas are most likely to fail. Most of these techniques focus on designing features (e.g. complexity metrics) that correlate with potentially defective code. Object-oriented metrics were initially suggested by Chidamber and Kemerer [7]. Basil et al. [3] and Briand et al. [5] were among the first to use such metrics to validate and evaluate fault-proneness. Subramanyam and Krishnan [44] and Tang et al. [46] showed that these metrics can be used as early indicators of externally visible software quality. D’Ambros et al. have compared popular fault prediction approaches for software systems [10], namely, process metrics [31], previous faults [24] and source code metrics [3]. Nagappan et al. [34] presented empirical evidence that code complexity metrics can predict post-release faults. Our previous work [37] takes into consideration not only code complexity metrics but also the faults detected by static analysis tools to build accurate pre-release fault predictors. Numerous research studies have analyzed code churn (number of lines of code added, removed, etc.) as a variable for predicting faults in large software systems [21, 33, 38]. All these research studies have gone into carefully designing features which are able to discriminate defective code from non-defective code such as code size, code complexity (e.g. Halstead, McCabe, CK features), code churn metrics (e.g. the number of code lines changed), or process metrics. Most defect prediction approaches consider defect prediction as a binary classification problem that can be solved by classification algorithms, e.g., Support Vector Machines (SVM), Naive Bayes (NB), Decision Trees (DT), or Neural Networks (NN). Such approaches simply classify source code changes into two categories: fault-prone or not fault-prone.

Those approaches, however, do not sufficiently capture the syntax and different levels of semantics of source code, which is an important capability for building accurate prediction models. Specifically, in order to make accurate predictions, features need to be discriminative: capable of distinguishing one instance of code region from another. The existing traditional features cannot distinguish code regions with different semantics but similar code structure. For example, in Figure 1, there are two Java files, both of which contain a for statement, a remove function and an add function. The only difference between the two files is the order of the remove and add function. File1.java will produce a NoSuchElementException when the function is called with an empty queue. Using traditional features to represent these two files, their feature vectors are identical, because these two files have the same source code characteristics in terms of lines of code, function calls, raw programming tokens, etc. However, the semantic content is different. Features that can distinguish such semantic differences should enable the building of more accurate prediction models. To bridge the gap between programs’ semantic information and features used for defect prediction, some approaches propose to leverage a powerful representation-learning algorithm, namely deep learning, to capture the semantic representation of programs automatically and use this representation to improve defect prediction.

In this survey, we review the different deep learning technologies used in software quality assurance to predict faults, and provide a survey on the state-of-the-art in deep learning methods applied to software defect prediction.

2 SOFTWARE DEFECT PREDICTION PROCESS

Fault prediction is an active research area in the field of software engineering. Many techniques and metrics have been developed to improve fault prediction performance. In recent decades, numerous...
studies have examined the realm of software fault prediction. Figure 2 briefly shows the history of software fault prediction studies in about the last 20 years.

As the process shows in Figure 3, the first step is to collect source code repositories from source code repositories and the commits contained therein. There are many traditional features defined in past studies, which can be categorized into two kinds: code metrics (e.g., McCabe features and CK features) and process metrics (e.g., change histories). The extracted features represent the train and test dataset. To select the best-fit defect prediction model, the most commonly used method is called k-fold cross-validation that splits the training data into k groups to validate the model on one group while training the model on the k – 1 other groups, all of this k times. The error is then averaged over the k runs and is named cross-validation error. The diagnostics of the model is based on these features: (1) Bias: the bias of a model is the difference between the expected prediction and the correct model that we try to predict for given data points. (2) Variance: the variance of a model is the variability of the model prediction for given data points. (3) Bias/variance tradeoff: the simpler the model, the higher the bias, and the more complex the model, the higher the variance.

Table 1: Common metrics used to assess the performance of classification models

<table>
<thead>
<tr>
<th>Metric</th>
<th>Formula</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>(\frac{TP+TN}{TP+TN+FP+FN})</td>
<td>Overall performance of model</td>
</tr>
<tr>
<td>Precision</td>
<td>(\frac{TP}{TP+FP})</td>
<td>How accurate the positive predictions are</td>
</tr>
<tr>
<td>Recall</td>
<td>(\frac{TP}{TP+FN})</td>
<td>Coverage of actual positive sample</td>
</tr>
<tr>
<td>F1 score</td>
<td>(\frac{2TP}{2TP+FP+FN})</td>
<td>Hybrid metric useful for unbalanced classes</td>
</tr>
</tbody>
</table>

Figure 4 shows a brief summary of how underfitting, overfitting and a suitable fit looks like for the three commonly used techniques regression, classification and deep learning. Once the model has been chosen, it is trained on the entire dataset and tested on the test dataset. Most defect prediction approaches take defect prediction as a binary classification problem. After fitting the models, the test data is fed into the trained classifier (the best-fit prediction model), which can predict whether the files are buggy or clean. Afterwards, in order to assess the performance of the selected model, quality metrics are computed. To have a more complete picture when assessing the performance of a model, a confusion matrix is used. It is defined as shown in Figure 5. We summarize the metrics for the performance of classification models in Table 1.

2.1 Within-Project Defect Prediction

Within-project defect prediction uses training data and test data that are from the same project. Many machine learning algorithms have been adopted for within-project defect prediction, including Support Vector Machines (SVM) [12], Bayesian Belief Networks [1], Naive Bayes (NB) [17], Decision Trees (DT) [13], [22], [49], Neural Networks (NN) [11], or Dictionary Learning [17]. Elish et al. [12] evaluated the feasibility of SVM in predicting defect-prone software modules, and they compared SVM against eight statistical and machine learning models on four NASA datasets. Their results showed that SVM is generally better than, or at least competitive with other models, e.g., Logistic Regression, Bayesian techniques, etc. Amasaki et al. [1] used a Bayesian Belief Network to predict the final quality of a software product. They evaluated their approach on a closed project, and the results showed that their proposed method can predict bugs that the Software Reliability Growth Model (SRGM) cannot handle. Wang et al. [49] and Khoshgoftaar et al. [22] examined the performance of tree-based machine learning algorithms on defect prediction. Their results indicate that tree-based algorithms can generate good predictions. Tao et al. [53] proposed a Naive Bayes based defect prediction model, and they evaluated the proposed approach on 11 datasets from the PROMISE defect data repository. Their experimental results showed that the Naive Bayes based defect prediction models could achieve better performance than J48 (decision tree) based prediction models. Jing et al. [17] introduced the dictionary learning technique to defect prediction. Their cost-sensitive dictionary learning based approach could significantly improve defect prediction in their experiments. Wang et al. [52] used a Deep Belief Network (DBN) to generate semantic
features for file-level defect prediction tasks. In Wang et al.’s work [52], to evaluate the performance of DBN-based semantic features as well as traditional features, they built prediction models by using three typical machine learning algorithms, i.e., ADTree, Naive Bayes, and Logistic Regression. Their experimental results show that the learned DBN-based semantic features consistently outperform the traditional defect prediction features on these machine learning classifiers. Most of the above approaches are designed for file-level defect prediction. For change-level defect prediction,

Mockus and Weiss [30] and Kamei et al. [19] predicted the risk of a software change by using change measures, e.g., the number of subsystems touched, the number of files modified, the number of added lines, and the number of modification requests. Kim et al. [23] used the identifiers in added and deleted source code and the words in change logs to classify changes as being fault-prone or not fault-prone. Jiang et al. [16] and Xia et al. [54] built separate prediction models with characteristic features and meta features for each developer to predict software defects in changes. Tan et al. [45] improved change classification techniques and proposed online defect prediction models for imbalanced data. Their approach uses time sensitive change classification to address the incorrect evaluation introduced by cross-validation. McIntosh et al. [28] studied the performance of change-level defect prediction as software systems evolve. Change classification can also predict whether a commit is buggy or not [39], [41], [44]. In Wang et al.’s work [52], they also compare the DBN-based semantic features with the widely used change-level defect prediction features, and their results suggest that the DBN-based semantic features can also outperform change-level features.

However, sufficient defect data is often unavailable for many projects and companies. This raises the need for cross-project bug localization, i.e., the use of data from one project to help locate bugs in another project.

2.2 Cross-Project Defect Prediction

Due to the lack of data, it is often difficult to build accurate models for new projects. Recently, more and more papers studied the cross-project defect prediction problem, where the training data and test data come from different projects.

Some studies ([25], [29], [57]) have been done on evaluating cross-project defect prediction against within-project defect prediction and show that cross-project defect prediction is still a challenging problem. He et al. [15] showed the feasibility to find the best cross-project models among all available models to predict defects on specific projects. Turhan et al. [48] proposed a nearest-neighbor filter to improve cross-project defect prediction. Zimmermann et al. [57] evaluated the performance of cross-project defect prediction on 12 projects and their 622 combinations. They found that the
defect prediction models at that time could not adapt well to cross-project defect prediction. Li et al. [26] proposed defect prediction via convolutional neural networks (DP-CNN). Their work differs from the above-mentioned approaches in that they utilize deep learning technique (i.e., CNN) to automatically generate discriminative features from source code, rather than manually designing features which can capture semantic and structural information of programs. Their features lead to more accurate predictions. The state-of-the-art cross-project defect prediction is proposed by Nam et al. [35], who adopted a state-of-the-art transfer learning technique called Transfer Component Analysis (TCA). They further improved TCA as TCA+ by optimizing TCA’s normalization process. They evaluated TCA+ on eight open-source projects, and the results show that their approach significantly improves cross-project defect prediction. Xia et al. [54] proposed HYDRA, which leverages a genetic algorithm and ensemble learning (EL) to improve cross-project defect prediction. HYDRA requires massive training data and a portion (5%) of labeled data from test data to build and train the prediction models. TCA+ [35] and HYDRA [54] are the two state-of-the-art techniques for cross-project defect prediction. However, in Wang et al.’s work [51], they only use TCA+ as baseline for cross-project defect prediction. This is because HYDRA requires that the developers manually inspect and label 5% of the test data, while in real-world practice, it is very expensive to obtain labeled data from software projects, which requires the developers’ manual inspection, and the ground truth might not be guaranteed. Most of the above existing cross-project approaches are examined for file-level defect prediction only. Recently, Kamei et al. [18] empirically studied the feasibility of change level defect prediction in a cross-project context. Wang et al. [51] examines the performance of Deep Belief Network (DBN)-based semantic features on change-level cross-project defect prediction tasks. The main differences between this and existing approaches for within-project defect prediction and cross-project defect prediction are as follows. First, existing approaches to defect prediction are based on manually encoded traditional features which are not sensitive to the programs’ semantic information, while Wang et al.’s approach automatically learns the semantic features using a DBN and uses these features to perform defect prediction tasks. Second, since Wang et al.’s method requires only the source code of the training and test projects, it is suitable for both within-project and cross-project defect prediction. The semantic features can capture the common characteristics of defects, which implies that the semantic features trained from one project can be used to predict a different project, and thus is applicable in cross-project defect prediction.

Deep learning-based approaches require only the source code of the training and test projects, and are therefore suitable for both within-project and cross-project defect prediction. In the next session, we explain, based on recent research, how effective and accurate fault-prediction models developed using deep learning techniques are.

3 DEEP LEARNING IN SOFTWARE DEFECT PREDICTION

Recently, deep learning algorithms have been adopted to improve research tasks in software engineering. The most popular deep learning techniques are: Deep Belief Networks (DBN), Recurrent Neural Networks, Convolutional Neural Networks and Long Short Term Memory (LSTM), see Table 2. Yang et al. [56] propose an approach that leverages deep learning to generate new features from existing ones and then use these new features to build defect prediction models. Their work was motivated by the weaknesses of logistic regression (LR), which is that LR cannot combine features to generate new features. They used a Deep Belief Network (DBN) to generate features from 14 traditional change level features, including the following: number of modified subsystems, modified directories, modified files, code added, code deleted, lines of code before/after the change, files before and after the change, and several features related to developers’ experience [56]. The work of Wang et al. [51] differs from the above study mainly in three aspects. First, they use a DBN to learn semantic features directly from source code, while Yang et al. use relations among existing features. Since the existing features cannot distinguish between many semantic code differences, the combination of these features would still fail to capture semantic code differences. For example, if two changes add the same line at different locations in the same file, the traditional features cannot distinguish between the two changes. Thus, the generated new features, which are combinations of the traditional features, would also fail to distinguish between the two changes. How to explain deep learning results is still a challenging question in the AI community. To interpret deep learning models, Andrej et al. [20] used character level language models as an interpretable testbed to explain the representations and predictions of a Recurrent Neural Network (RNN). Their qualitative visualization experiments demonstrate that RNN models could learn powerful and often interpretable long-range interactions from real-world data. Radford et al. [42] focus on understanding the properties of representations learned by byte-level recurrent language models for sentiment analysis. Their work reveals that there exists a sentiment unit in the well-trained RNNs (for sentiment analysis) that has a direct influence on the generative process of the model. Specifically, simply fixing its value to be positive or negative can generate samples with the corresponding positive or negative sentiment. The above studies show that to some extent deep learning models are interpretable. However, these two studies focused on interpreting RNNs on text analysis. Wang et al. [51] leverages a different deep learning model, Deep Belief Networks (DBN), to analyze the ASTs of source code. The DBN adopts different architectures and learning processes from RNNs. For example, an RNN (e.g., LSTM) can, in principle, use its memory cells to remember long-range information that can be used to interpret data it is currently processing, while a DBN does not have such memory cells. Thus, it is unknown whether DBN models share the same properties (w.r.t interpretability) as RNNs. Many studies used a topic model [4] to extract semantic features for different tasks in software engineering [6], [36], [55]. Nguyen et al. [36] leveraged a topic model to generate features from source code for within-project defect prediction. However, their topic model handles each source file as an unordered token sequence. Thus, the generated features cannot capture structural information in a source file. A just-in-time defect prediction technique was proposed by Kamei et al. which leverages the advantages of Logistic Regression (LR) [19]. However, logistic regression has two weaknesses. First, in logistic regression, the contribution of
With the ever-increasing scale and complexity of modern software, software reliability assurance has become a significant challenge.

Table 2: Common machine learning and deep learning techniques used in software defect prediction

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Definition</th>
<th>Advantages</th>
<th>Drawbacks</th>
<th>Ref.</th>
</tr>
</thead>
</table>
| RNN | RNNs are called recurrent because they perform the same task for every element of a sequence, with the output being dependent on the previous computations. | - Possibility of processing input of any length
- Model size not increasing with size of the input
- Computation takes into account historical information | - Slow computation
- Difficulty of accessing information from a long time ago
- Cannot consider any future input for the current state | [50] |
| LSTM | A long short-term memory (LSTM) network is a type of RNN model that avoids the vanishing gradient problem by adding 'forget' gates. | - Remembering information for a long periods of time
- It takes longer to train
- It requires more memory to train | - [8], [9] |
| CNN | CNN is a class of deep neural network, it uses convolution in place of general matrix multiplication in at least one of their layers. | - It automatically detects the important features without any human supervision.
- Need a lot of training data
- High computational cost. | - [26], [32], [40] |
| Stacked Auto-Encoder | A stacked autoencoder is a neural network consist several layers of sparse autoencoders where output of each hidden layer is connected to the input of the successive hidden layer. | - Possible use of pre-trained layers from another model, to apply transfer learning
- It does not require labeled inputs to enable learning | - Computationally expensive to train
- The underlying math is more complicated
- The model is prone to overfitting, though this can be mitigated via regularization | [27], [47] |
| DBN | DBN is an unsupervised probabilistic deep learning algorithm. | - Only needs a small labeled dataset
- It is a solution to the vanishing gradient problem
- It overlooks the structural information of programs | - [52] |
| Logistic Regression | LR is used to describe data and to explain the relationship between one dependent binary variable and independent variables. | - Easy to implement
- Very efficient to train | - It cannot combine different features to generate new features.
- It performs well only when input features and output labels are in linear relation | [19] |
| SVM | SVM is a supervised learning model. It can be used for both regression and classification tasks. | - Using different kernel function it gaves better prediction result
- Not suitable for large number of support vectors | - [12] |
| Decision Tree | DT is a decision support tool that uses a tree-like graph or model of decisions and their possible consequenses. | Tree based methods empower predictive models with high accuracy, stability and ease of interpretation.
- Construction of decision tree is complex | - [13], [22], [49] |

Table 2: Common machine learning and deep learning techniques used in software defect prediction

Each feature is calculated independently, which means that LR cannot combine different features to generate new ones. For example, given two features x and y, if $x \times y$ is a highly relevant feature, it is not enough to input only x and y because logistic regression cannot generate the new feature $x \times y$. Second, logistic regression performs well only when input features and output labels are in linear relation. Due to these two weaknesses, the selection of input features becomes crucial when using logistic regression. The bad selection of features may result in a non-linear relation for output labels, leading to bad training performance or even training failure. This severe problem leads some studies to adopt Deep Belief Network (DBN), which is one of the state-of-the-art deep learning approaches. The biggest advantage of DBN, as shown in Table 2, over logistic regression is that DBNs can generate a more expressive feature set from the initial feature set. We summarizes in Table 2 the most commonly used machine learning and deep learning techniques in software defect prediction.

4 CONCLUSION

With the ever-increasing scale and complexity of modern software, software reliability assurance has become a significant challenge. To enhance the reliability of software, we consider predicting potential code defects in software implementations a beneficial direction, which has the potential to dramatically reduce the workload of software maintenance. Specifically, we see the highest potential in a defect prediction framework which utilizes deep learning algorithms for automated feature generation from source code with the semantic and structural information preserved. Moreover, our survey corroborates the feasibility of deep learning techniques in the filed of program analysis.

REFERENCES

Analysis of the E
Tree-Based Model for Software Defect Prediction in Practice. In
versus Within-Company Cost Estimation Studies: A Systematic Review.
Technical Journal
ing Target? A Longitudinal Case Study of Just-in-Time Defect Prediction. In
Shane McIntosh and Yasutaka Kamei. 2018. Are Fix-Inducing Changes a Mov-
for software defect prediction using software metrics.
Features for Defect Prediction. In
Software Defect Prediction.
Safa Omri and Carsten Sinz
Proceedings of the Thirteenth AAI Conference on Artificial Intelligence
[Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn
Measures to Predict System Defect Density. In Proceedings of the 27th International
Conference on Software Engineering.
[Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining Metrics to
Predict Component Failures. In Proceedings of the 26th International Conference on
Software Engineering.
Jaehung Nam, Simin Jalal Pan, and Sunghun Kim. 2013. Transfer Defect Learn-
Tung Thanh Nguyen, Tien N. Nguyen, and Tu Minh Phuong. 2011. Topic-Based
Defect Prediction (NIIEEE-Track). In Proceedings of the 33rd International Conference
on Software Engineering.
Metrics as Early Indicators of Software Defects. Journal of Software Engineering
[2015].
Proceedings of the 28th International Conference on Software Engineering.
Proceedings of the 27th International Conference on Software Engineering.
Proceedings of the 16th International Conference on Mining Software Repositories.
Proceedings of the 16th International Conference on Mining Software Repositories.
Proceedings of the 11th International Conference on Software Engineering.
Proceedings of the 30th International Conference on Software Engineering.
Proceedings of the 10th IEEE International Conference on Mining Software Repositories.