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ABSTRACT
With the wide and rapid adoption of Deep Neural Networks (DNNs)
in various domains, an urgent need to validate their behaviour
has risen, resulting in various test adequacy metrics for DNNs.
One of the metrics, Surprise Adequacy (SA), aims to measure how
surprising a new input is based on the similarity to the data used
for training. While SA has been evaluated to be effective for image
classifiers based on Convolutional Neural Networks (CNNs), it
has not been studied for the Natural Language Processing (NLP)
domain. This paper applies SA to NLP, in particular to the question
answering task: the aim is to investigate whether SA correlates well
with the correctness of answers. An empirical evaluation using the
widely used Stanford Question Answering Dataset (SQuAD) shows
that SA can work well as a test adequacy metric for the question
answering task.

KEYWORDS
Deep Learning, Natural Language Processing, Software Testing

1 INTRODUCTION
Deep Learning (DL) and Deep Neural Networks (DNNs) have been
rapidly being adopted in various domains [7]. One of the most
successful tasks for DL has been image recognition [4, 17], which
quickly found applications such as autonomous driving [2] and
medical imaging [10]. Due to the safety critical nature of these
applications, testing and validation of DNNs have received much
attention recently [5, 11, 13, 18].

However, most of the existing work on testing of DL systems
have focused on image recognition tasks, especially image classifi-
cation. For example, almost all test adequacy metrics that have been
proposed recently, such as Neuron Coverage [13], Strong Neuron
Activation Coverage (SNAC) [11], and Surprise Adequacy (SA) [5],
have all been primarily evaluated against image classifiers, using
benchmarks including MNIST [8] and CIFAR10 [6]. We suspect
there are multiple reasons for this. Besides the fact that its applica-
tion areas are the most immediate safety critical ones, the image
recognition domain is intuitive to understand, and mature enough
to possess multiple widely studied benchmarks, resulting in many
new techniques first being evaluated in the domain.

In an attempt to expand the scope of DL testing techniques, this
paper applies one of the latest test adequacy criteria, Surprise Ad-
equacy (SA) [5], to the domain of Machine Comprehension (MC)
and Question Answering (QA). MC/QA is formulated as answering
a natural language query about a given context paragraph. Helpful
test input for an MC/QA model will be a pair of context paragraph
and a valid query (i.e., a query that is genuinely about some infor-
mation in the context paragraph) that the model cannot answer
properly. From the SA perspective, we would assume that, if the

pair of a paragraph and a query is similar to ones observed during
training, the model is more likely to answer correctly. We would
also assume that, if the pair is not familiar, i.e., surprising, the model
is more likely to answer incorrectly. The capability to make this
prediction is important for testing of DL systems because almost
always the only available test oracle is human labelling. To evaluate
the model performance against new pairs of a context paragraph
and a query, a human must read both the paragraphs and queries
and decide whether the answer is correct, incurring a huge cost. A
reliable prediction of model performance can allow us to prioritise
inputs that are likely to reveal incorrect behaviours.

While we expect the basic principles behind SA to hold for
the MC/QA task, the natural language input format entails a cou-
ple of important differences from image recognition tasks. First,
words and sentences are discrete entities, compared to images of
real-world objects that show more continuous characteristics (e.g.,
colours inhabit a continuous domain, whereas words are discrete).
Whether input similarity is still meaningful in the discrete input
space remains to be confirmed. Second, natural language inputs
tend to be of variable sizes, whereas images are easily rescaled into
fixed sizes. The variability makes it difficult to capture the internal
states of DNN models in fixed shapes.

We evaluate the feasibility of applying SA to MC/QA tasks de-
spite the differences from image recognition tasks, using a widely
studied MC/QA benchmark with over 100K queries, SQuAD [15],
and a Bi-directional Attention Flow (BiDAF) question answering
model [16]. The results show that SA is indeed correlated with the
correctness of model behaviour, allowing us to prioritise unseen
test inputs for manual labelling according to the likelihood of model
producing incorrect answers. Using the SA values and labels about
the correctness of the answer, both obtained from the original train-
ing data of the MC/QA model, we can choose a subset of inputs that
lead to 17.6 percent point decrease in model performance (measured
in Exact Match score) when compared to random sampling.

The rest of this paper is organised as follows. Section 2 describes
the background of test adequacy for DNNs, including a detailed
description of SA. Section 3 presents the Machine Comprehen-
sion/Question Answering model that we study. Section 4 presents
the research questions, and Section 5 describes our experimental
setup. Section 6 presents and discusses the results of the empiri-
cal evaluation. Section 7 goes through the threats to validity, and
Section 8 concludes with an enumeration of future work.

2 BACKGROUND
This section contains background information about existing work
on testing of DL systems, as well as a detailed description of Surprise
Adequacy that we use in this paper.
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2.1 Test Adequacy for Deep Neural Nets
In traditional software testing, the ideal test input is one that will
reveal faults in the target software. However, directly obtaining
such ideal inputs is not possible, as the only way of ensuring that we
have all fault revealing input is to perform exhaustive testing that
takes an infeasible amount of time for any practical software system.
Consequently, we define surrogate measures that are thought to be
correlated with fault revealing capability, such as code coverage [1]
and capture how well an input achieves such surrogate measures
in the form of test adequacy.

In testing of DL systems, we can similarly define test adequacy
of an input as the likelihood of the input revealing suboptimal be-
haviour of the DL model under testing. Early test adequacy metrics
for DL systems tended to extend the coverage analogy by defining
criteria for elements in certain sets to be covered. For example,
Neuron Coverage (NC) considers a neuron in a DNN covered by a
test suite (i.e., a set of test inputs) if, during the execution of the test
suite, the neuron is activated above a predefined threshold [13]. The
intuition is that a higher NC means the underlying DNN has been
executed by a more diverse set of inputs, which in turn has a higher
chance of revealing undesired behaviour compared to a less diverse
set. Similarly, 𝑘 Multisection Neuron Coverage (kMNC) defines 𝑘
different buckets over the range of neuron activation values for all
neurons and computes the ratio of covered buckets to the number
of all buckets [11].

2.2 Surprise Adequacy
Surprise Adequacy (SA) has been proposed by Kim et al. to over-
come the weaknesses of previous test adequacy criteria [5]. The
weaknesses are twofold. First, some of the proposed test adequacy
criteria tend to saturate too easily, losing the ability to differenti-
ate test suites too quickly [11]. Second, Kim et al. point out that
criteria such as NC and kMNC tend to produce the same or very
similar value to different individual test inputs, losing the ability to
differentiate individual test inputs [5].

Going beyond the coverage analogy, Kim et al. defines the test
adequacy of an input as the similarity to the data observed during
the training of the target DNN. The intuition is that if an unseen
new input is nevertheless similar to ones observed during training,
the model is likely to behave correctly, whereas if an unseen new
input is significantly different from ones observed during training,
the model is much less likely to behave correctly. The similarity to
the training data is observed by collecting and analysing Activation
Traces (ATs).

2.2.1 Activation Trace. AT is what corresponds to (partial) execu-
tion traces in traditional software. Given a DNN, Kim et al. defines
an AT vector to be the dump of a whole (or partial) neural layer
during its execution by an input. It corresponds to the state of the
DNN model, captured as a datapoint in the latent feature space
used by the model. By collecting ATs from all inputs in the training
data, we can store the internal representation of the training data.

2.2.2 Likelihood based SA. Given the set of AT vectors obtained
from the training data, 𝛼𝑇

𝑖
∈ 𝑇 , and an AT vector from a new and

unseen input, 𝛼𝑛 , Kim et al. proposes Likelihood based Surprise

Adequacy (LSA) as follows. First, perform Kernel Density Estima-
tion over 𝛼𝑇

𝑖
∈ 𝑇 , with a Gaussian kernel function 𝐾 . The density

function is then given as 𝑓 (𝛼𝑛) = 1
|𝑇 |

∑
𝛼𝑇
𝑖
∈𝑇 𝐾 (𝛼𝑛 − 𝛼𝑇

𝑖
). The LSA

of the new activation vector 𝛼𝑛 is computed as the negative log
of the density: 𝐿𝑆𝐴(𝛼𝑛) = − log 𝑓 (𝛼𝑛): the lower the probability
density of an activation trace vector of a new input is, the more
surprising that input is to the model.

2.2.3 Mahalanobis Distance based SA. We propose Mahalanobis
distance SA (MDSA) as an extension to the original Distance based
SA (DSA) proposed by Kim et al. [5]. MDSA is inspired by the use
of Mahalanobis distance by Lee et al. [9] in an attempt to detect
out of distribution inputs, which is essentially a goal shared by the
original SA. Mahalanobis Distance measures the distance between a
probability distribution and a single data point [12]. Given a vector
®𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) and a set of observations with mean values ®𝜇 =
(𝜇1, 𝜇2, . . . , 𝜇𝑛) and a covariancematrix𝐶 , the distance𝐷𝑀 between
®𝛼 and ®𝜇 is defined as 𝐷𝑀 ( ®𝛼, ®𝜇) =

√
( ®𝛼 − ®𝜇)𝑇𝐶−1 ( ®𝛼 − ®𝜇). We simply

compute the Mahalanobis Distance between the activation vector
of a new unseen input and the distribution of activation vectors
obtained from the training data. The farther away an activation
trace vector of a new input is from the training data distribution,
the more surprising the input is to the model.

3 MACHINE COMPREHENSION/QUESTION
ANSWERING MODEL

Weuse the Bi-directional Attention Flow (BiDAF)model [16] for our
empirical evaluation. While BiDAF is not the state-of-the-art model
for the SQuAD dataset (see Section 5.1), it has subsequently inspired
cutting-edge models like BERT [3] and ELMo [14]. We choose
BiDAF because its bi-directional attention flow layer provides a
single representation that reflects both the context and query words.
Here, we briefly describe the core mechanism of the BiDAF model
that is relevant to how we extract ATs: for more technical details,
please see the original publication [16].

3.1 Bi-directional Attention Flow Model
The BiDAF model consists of six layers. Suppose {𝑥1, . . . , 𝑥𝑇 } and
{𝑞1, . . . , 𝑞 𝐽 } represent the words in the context paragraph and the
query respectively. The lowest two layers are embeddings for char-
acters and words, concatenated and processed into 𝑑-dimensional
vectors, resulting in 𝑋 ∈ R𝑑×𝑇 and 𝑄 ∈ R𝑑×𝐽 . The third layer is a
contextual embedding layer, which learns the interactions between
words using a bi-directional LSTM, resulting in 𝐻 ∈ R2𝑑×𝑇 from 𝑋

and𝑈 ∈ R2𝑑×𝐽 from 𝑄 .
The fourth layer is the attention flow layer, which is the core of

the BiDAF model. First, we construct 𝑆 ∈ R𝑇×𝐽 , where 𝑆𝑡 𝑗 indicates
the similarity between the 𝑡-th context word and the 𝑗-th query
word. Subsequently, we compute two sets of attention weights.

• Context-to-query Attention (𝑈̃ ∈ R2𝑑×𝑇 ): this signifies how
close all the query words are to each context word, hence
the size of 2𝑑 ×𝑇 .

• Query-to-context Attention (𝐻̃ ∈ R2𝑑×𝑇 ): this signifies how
close to one of the query words each context word is, hence
the size of 2𝑑 ×𝑇 .
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Since BiDAF answers the query using a phrase in the context
paragraph, the attention flow is aligned with the length of the
context paragraph. Once the bi-directional attention matrices 𝑈̃
and 𝐻̃ are computed, this layer returns the following concatenation
as the output: [ℎ; 𝑢̃;ℎ ◦ 𝑢̃;ℎ ◦ ℎ̃], where [; ] is vector concatenation
across rows, and ◦ is element-wise multiplication. Each context
word is represented as a query-aware encoding of length 8𝑑 , as
each of ℎ, 𝑢̃, ℎ ◦ 𝑢̃, and ℎ ◦ ℎ̃ is of length 2𝑑 . We hereafter refer to
each of these four 2𝑑 vectors as a section of the attention flow layer.

3.2 Extraction of Activation Traces
We use the output of the attention flow layer, i.e., the query-aware
encoding of all context paragraph words, as the activation trace.
Given a question answer input with 𝑇 words in the context para-
graph, we get𝑇 vectors, each of length 8𝑑 (or 2𝑑 , if using individual
sections). However, it is not possible to aggregate ATs from dif-
ferent inputs, as the number of words in the context paragraph
can differ across inputs, making it impossible to perform KDE or
compute Mahalanobis Distance. Clipping 𝑇 to a fixed length is also
not ideal, as the correct answer phrase may be clipped from the
context paragraph as a result.

This is one of the major differences between image-based DNNs
and natural language processing DNNs: unlike images that can
be rescaled to a fixed size, natural language inputs are inherently
variable lengths, making it difficult to capture the internal state of
DNNs in a fixed shape. For this study, we take the average of all
𝑇 query-aware context word representations, resulting in an AT
vector of dimensionality of 8𝑑 (or 2𝑑) per question answering input.
While the averaging definitely results in information loss, we take
the simplest approach to evaluate the feasibility of applying SA to
variable length natural language inputs. We leave better handling
of variable length inputs as future work.

4 RESEARCH QUESTIONS
Existing literature has evaluated SA mostly with image-based tasks.
We aim to answer the following research questions to evaluate SA
against Question Answering task in NLP.

RQ1. Representativeness of AT: We investigate whether ATs
extracted from the BiDAF model can effectively capture the internal
state of the model, especially despite the loss of information due to
the averaging of context word vectors.We posit that, if the extracted
ATs capture the internal behaviour of the BiDAF model, we should
be able to see some semantic patterns among the extracted ATs. We
visualise the distribution of ATs and perform a qualitative analysis
based on the types of queries to answer RQ1.
RQ2. Effectiveness of SA: We investigate whether SA is corre-
lated with the correctness of the produced answers. We analyse the
ATs extracted from the training data, and compute the SA values
of each test input to study the correlation between SA and the
correctness of the answer. To answer RQ2, we perform a statisti-
cal hypothesis test to compare SA values from both correctly and
incorrectly answered queries. We also sort queries according to
their SA values, and see if higher SA values result in more incorrect
answers.

RQ3. Differences among SA types: We study whether one type
of SA metric is better than others. We compute and compare two
different SA values, LSA and MDSA, for every input in the data. In
addition, we consider four additional variations of LSA, each based
on a section of the output of the attention flow layer. We compared
the effectiveness of each type of SA to answer RQ3.

5 EXPERIMENTAL SETUP
5.1 Dataset
We use version 1.1 of the Standford Question Answering Dataset
(SQuAD) [15], which is a widely used dataset for the evaluation of
Machine Comprehension and Question Answering task. SQuAD
consists of more than 100,000 crowd-sourced questions extracted
from Wikipedia articles. A given context paragraph corresponds
to one paragraph of an article, and answers for each question are
guaranteed to be a segment of a context paragraph. There are a
total of 87,599 questions in training data and 10,570 questions in
test data. We use the 87,599 questions to obtain the distribution of
the training data, which is used to compute SA values for each of
the 10,570 questions in the test data.

5.2 Model
For evaluation, we used pre-trained weights (bidaf_50.h5) of the
keras implementation of BiDAF, available from https://github.com/
ParikhKadam/bidaf-keras.1 The pre-trained model was trained with
SQuAD v1.1 using batch size of 16 and 50 epochs. The embedding
dimension, 𝑑 , was set to 400. There was no limit on the length of
both passage and question. The training and test set accuracies of
the pre-trained model are 51.86% and 44.97% respectively.

5.3 Configurations for SA
Kim et al. suggest removing elements of AT vectors that show low
variance to reduce the computational cost of KDE [5]. Since each
section of our AT has different ranges of activation values, we set
up different thresholds by sections in our evaluation: we use 10−2
for LSA based on section 1 and 2 (ℎ and 𝑢̃, respectively), and 10−4

for LSA based on section 3 and 4 (ℎ ◦ 𝑢̃ and ℎ ◦ ℎ̃, respectively), as
well as all sections. We compute KDE using scikit-learn version
0.22, and implement Mahalanobis Distance using numpy version
1.14.5. All experiments have been run using Python version 3.6 on a
machine equipped with Intel i7-8700 CPU with 32GB RAM running
Linux 16.04 LTS.

6 RESULTS
This section presents the results of the empirical evaluation and
answers three research questions.

6.1 Representativeness of AT (RQ1)
RQ1 concerns the representativeness of ATs, i.e., whether ATs we
extract actually capture the internal latent features of our model.
For qualitative analysis of ATs, we visualise the AT vectors ex-
tracted from the questions in the test data using all four sections,

1We use the keras version because the pre-trained weights for the original TensorFlow
implementation is not publicly available: see https://github.com/allenai/bi-att-flow/
issues/107
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based on the interrogatives of the questions, e.g., “When”, “Where”,
etc. For visualisation of the distribution of ATs, we perform PCA
to reduce the dimensions to 50 and subsequently use t-SNE to rep-
resent reduced AT vectors in two-dimensional space (133 yes/no
questions conjugated with “be” or “do” have been excluded). Fig-
ure 1 shows the distribution of ATs: different interrogatives are
colored respectively.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

que_type
which
where
what
who
how
when
whose
why

Figure 1: AT visualisation by question words using PCA to
50 dimensions followed by t-SNE

Despite the loss of information due to the averaging the word
vectors (see Section 3.2), the ATs tend to show sufficient separa-
tion between interrogative types. “When (brown)”, “How (purple)”,
“Who (red)”, “Why (gray)”, and “Where (orange)” occupy different
AT subspaces and are clustered together. “What (green)” is the most
widely spread, which may be partially explained by the various
types of questions that start with “what”, such as “What time was...”
or “What place was...”. Largely overlapping clusters also make intu-
itive sense: “which (blue)” and “whose (pink)” ATs are overlapping
with “what” and “who”, respectively.

We also investigate whether ATs that correspond to correctly
and incorrectly answered questions are clearly separated as well.
Figure 2a and 2b show “When” and “What” ATs only, with different
colors indicating correct and incorrect answers.We also plot the ATs
of the training data for these interrogatives. The plots show mixed
results. The correct answers for the “when” questions tend to cluster
together, suggesting the existence of a familiar (i.e., unsurprising)
region of input. However, the training ATs overlap with almost
all test ATs, which is the same pattern observed with “what” ATs.
We suspect two potential reasons for the lack of separation. First,
the training accuracy of the pre-trained model is in itself not very
high (accuracy of 51.86). meaning that the locations of the training
ATs may not represent the region of inputs for which the model
performs well. Second, two dimensions may be too low to show
the separation between correct and incorrect answers. Answer
to RQ1: based on these results, we argue that there is sufficient
evidence suggesting that ATs do capture the internal behaviour of
the model in a meaningful way.

15 10 5 0 5 10 15

15

10

5

0

5

10

15

train
test(incorrect)
test(correct)

(a) When

15 10 5 0 5 10 15

15

10

5

0

5

10

15

train
test(incorrect)
test(correct)

(b) What

Figure 2: AT visualisation with answer correctness

6.2 Effectiveness of SA (RQ2)
RQ2 concerns the correlation between SA and the correctness of
the answer. To investigate this, we first perform a one-sided Mann-
Whitney U test between LSA values computed from ATs of correct
and incorrect answers respectively, using all four sections (LSA𝐴).
The null hypothesis is that there is no difference between LSA𝐴

values of correct and incorrect answers, whereas the alternative
hypothesis is that correct answers have lower LSA𝐴 values than
incorrect answers.

Table 2: LSA𝐴 Comparison

LSA𝐴 mean std

Correct -158.365 23.864
Incorrect -152.786 23.304

𝑝-value 4.327e-33
lsa_all

250

200

150

100

50

sa
_v

al
ue

correct
wrong

Figure 3: Boxplot of LSA𝐴

Table 2 shows the descriptive statistics of LSA𝐴 , as well as the
𝑝-value from the Mann-Whitney U test, which shows a statistically
significant difference. However, the boxplots in Figure 3 show that
there is a significant overlap between these two values, potentially
reflecting the low accuracy of the pre-trained model.

However, LSA𝐴 can still effectively prioritise incorrect answers,
as can be shown in Figure 4. We sort all test inputs according to
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Table 1: Comparison of MDSA, LSA𝐴, LSA1, LSA2, LSA3, and LSA4 values. Apart from LSA4, all SA values are smaller for inputs
that lead to correct answers, as can be seen from the 𝑝-values of Mann-Whitney U Test.

MDSA LSA𝐴 LSA1 LSA2 LSA3 LSA4

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

mean 3722.957 3970.948 -158.365 -152.786 -27.163 -26.648 -125.975 -120.421 194.075 -192.243 -177.154 -175.968
std. 2137.343 2820.148 23.864 23.304 7.776 7.897 20.492 20.145 14.882 15.831 19.364 21.287

𝑝-value 7.5879e-08 4.327e-33 4.983e-05 6.504e-43 1.871e-11 0.022

their LSA𝐴 values, in ascending and descending order respectively.
Subsequently, we take first 100, 250, 500, 750, 1,000, and multiples
of 1,000 inputs following the sorted order, and evaluate the perfor-
mance of the model over these sets of inputs, recording the Exact
Match (EM), which is the percentage of questions that have exact
correct answers, and F1 score, which is computed from comparing
the words in the produced answer to those in the ground truth an-
swer. Inputs with higher LSA𝐴 lead to poor performance, and lower
LSA𝐴 to high performance, a trend that is shared between both
metrics. Answer to RQ2: This trend suggests that it is possible to
prioritise incorrect answers for human labelling based on SA.
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Figure 4: Model Evaluation on selected test data by sorted
LSA𝐴 values

6.3 Differences Among SA Types (RQ3)
Finally, we compare different types of SA values. Table 1 contains
descriptive statistics of all SA values studied: MDSA and LSA𝐴 ,
as well LSA1, LSA2, LSA3, and LSA4 that are computed from four
sections of the attention flow layer output respectively. We perform
the same Mann-Whitney U test between SA values of correct and
incorrect answers: all types of SA except LSA4 show that SA values
from the correct inputs are statistically significantly smaller than
those from the incorrect inputs.

However, for the purpose of prioritisation, we aremore interested
in the extreme SA values, rather than their overall distributions.
To investigate this, we compare the EM score of inputs with the
highest top 100 SA values to the average EM score of randomly
sampled 100 inputs (repeated 20 times): the results are shown in
Table 3. All SA types produce sets of inputs with significantly low
EM scores when compared to random sampling, suggesting that
they all can be used to effectively prioritise inputs. Figure 5 also
show the same prioritisation results as in Figure 4, with the same

Table 3: EM Scores of Top 100 SA Inputs vs. Avarege EM
Scores of Random 100 Inputs (Sampled 20 times)

SA Type Top 100 Random 100

MDSA 27.0 44.6
LSA𝐴 31.0 45.35
LSA1 44.0 44.35
LSA2 30.0 45.95
LSA3 38.0 42.2
LSA4 30.0 44.95

trend. Answer to RQ3: while the studied SA types show different
distributions, they all can be used to effectively select inputs that
lead to poor model performance.

7 THREATS TO VALIDITY
Threats to internal validity concerns factors that may influence the
observed effects. In our study, this includes the validity of BiDAF
model itself, as well as tools that we use to extract and analyze
ATs and SA values. To address concerns, we have used the pub-
licly available implementation of the BiDAF model, and directly
adopted the pre-trained model weights. Our analysis has been per-
formed using widely studied statistical packages, such as scipy
and scikit-learn. Threats to external validity concern any factors
that may prevent generalisation of our observation. This work is
an early feasibility study for the application of SA to DNNs with
language inputs, and consequently, the scope of the study is limited.
Only additional future work with more models can ensure general-
isability. Finally, threats to construct validity concerns situations
where used metrics may not reflect the abstract properties they
claim to measure. We use EM and F1 scores to evaluate our claims
about SA: both are intuitive evaluation metrics that are widely used
by many machine learning literature, and there is little room for
misunderstanding.

8 CONCLUSION AND FUTUREWORK
We conduct a feasibility study for applying Surprise Adequacy
(SA) metric to QA models in the Machine Comprehension domain.
SA has been mainly evaluated with image recognition models;
this study aims to extend the scope of its applicability. Since the
cost of human labelling in text-based Machine Comprehension
is significantly high, being able to select inputs that are likely to
reveal incorrect behaviour can help to prioritise the human effort for
labelling more efficiently. An empirical evaluation of applying SA
to the Bi-directional Attention Flow model, using a widely studied
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Figure 5: Model Evaluation on selected test data by sorted SA values(Ascending/Descending)

Question Answering benchmark, SQuAD, shows that, despite some
challenges, SA can effectively prioritise inputs that lead to low
model performance. Future work includes evaluation using more
diverse QA models, as well as improved AT extraction techniques
that can handle variable length model inputs more appropriately.
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