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ABSTRACT

Deep Learning (DL) is powerful family of algorithms used for a

wide variety of problems and systems, including safety critical

systems. As a consequence, analyzing, understanding, and testing

DL models is attracting more practitioners and researchers with

the purpose of implementing DL systems that are robust, reliable,

efficient, and accurate. First software testing approaches for DL

systems have focused on black-box testing, white-box testing, and

test cases generation, in particular for deep neural networks (CNNs

and RNNs). However, Deep Reinforcement Learning (DRL), which

is a branch of DL extending reinforcement learning, is still out of

the scope of research providing testing techniques for DL systems.

In this paper, we present a first step towards testing of DRL systems.

In particular, we investigate whether neuron coverage (a widely

used metric for white-box testing of DNNs) could be used also for

DRL systems, by analyzing coverage evolutionary patterns, and the

correlation with RL rewards.

CCS CONCEPTS

• Theory of computation → Reinforcement learning; • Soft-

ware and its engineering→ Software testing and debugging.
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1 INTRODUCTION

With the recent advancement of Deep Neural Networks (DNNs)

[10], and in particular their success in image and large data set

processing, Deep Learning (DL) techniques are being applied to a

wide variety of problems. Notwithstanding, the inner working of

algorithms developed using DNNs remains to be largely unknown.

As a consequence, in recent years there has been an increasing

interest in measuring, analyzing, and testing DNNs [19]. However,

we identify twomain limitations in existing proposals. First, existing

approaches focus on testing standard DNNs. Deep Reinforcement

Learning (DeepRL) techniques differ from standard DNNs as they

merge DNNs and RL, and are therefore not contemplated by current

efforts. Second, existing approaches focus mostly on black-box

testing of the DNN algorithms, which does not offer insight into

the internals of the network, just about its output.
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Both black-box and white-box testing approaches have been

studied focusing on testing CNNs and RNNs [19]. However, black-

box testing is not directly applicable to DeepRL because DeepRL

applications could have a range of correct behaviors, differing in

optimality (e.g., suitable value range rather than the exact value) [2].

When testing DNNs, there is a “ground truth” that serves as baseline

for assessing the accuracy (e.g., true positives rate). Identifying the

rate of correct actions that were learned with DeepRL, i.e., assessing
how close the system is to optimal values, is not straight-forward,

particularly when optimizing the long-term performance.

Conversely, white-box testing is a more suitable approach for

DeepRL, because the internals of the system (i.e., neurons in a

DeepRL system) can be inspected to measure coverage. This type

of metrics have been already proposed to measure the percentage of

neurons that are activated in a DNN system and different activation

patterns. Some examples are neuron coverage [12], MC/DC [11],

SS/VS/SV/ VV coverage [13], and neuron boundary coverage, multi-

section neuron coverage, strong neuron coverage, and top neuron

coverage [5]. However, as of today there is no similar study that is

performed on DeepRL systems.

In this paper, we explore testing techniques for DeepRL ap-

proaches (Section 2). We use white-box testing to study the evolu-

tionary coverage of deep networks, for the specific case of DeepRL

(Section 3). To achieve this, we analyze neuron coverage and re-

wards obtained by two different models of Deep Q-Network (DQN)

implemented for the Mountain Car Problem (MPC) (Section 4). The

results of our study (Section 5) show that “good" neuron coverage

does not necessarily mean success in a RL task.

Future work should replicate this study on a larger scale and

with different DeepRL problems. In addition, more studies should

be focused on analyzing the impact of coverage on the effectiveness

of DeepRL systems, and defining metrics that measure effectiveness

by combining internal behavior and outputs of DeepRL systems.

2 RELATEDWORK

DeepRL is an extension of RL that takes advantage of the capabili-

ties of DNNs to capture larger state-action spaces. As little work

has been done in the field of testing RL-based and DeepRL-based

software systems, in this section we present existing approaches

for testing of DNN systems and their relation with our work.

Symbolic execution has been used for identifying system’s com-

ponent activation based on inputs to: (1) generate more effective

tests [8], (2) find pixel attacks that have the same activation pattern

as the original image [3], and (3) generate test inputs [1]. Deep-

Explore [7] proposes neuron coverage as a test adequacy metric

for DNNs. Although no existing work uses concrete execution,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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recent approaches [12] use concolic execution to resolve cover-

age requirements, resulting in a 10% higher neuron coverage than

DeepExplore.

Dynamic analysis has been also used, for instance, Wicker et al.

[17] present a feature-guided black-box safety testing approach

(for image classifiers) that relies on generating adversarial exam-

ples. Wang et al. [15], propose a way to test the robustness of

Natural language inference models by swapping the order of the

provided fragments. Ma et al. [4] present an adaptation of combi-

natorial testing for DNNs, along with a set of coverage criteria for

DL systems.

Other approaches combine white- and black-box testing. For

example, DeepHunter [18] uses metamorphic mutation to gener-

ate semantically preserved tests. Pei et al. [7] propose a white-box

differential testing technique to generate test inputs for a deep

learning system. Such approach is based on comparing multiple

DL systems by cross-checking each other instead of using an or-

acle. DeepTest [14] systematically explores different parts of the

DNN logic by generating test inputs that maximize the number of

activated neurons.

The analysis of the related work suggests different approxima-

tions to test DNNs adequacy. The results from these proposals are

promising in the evaluation of the models. However, a commonality

in these models is that they do not incorporate a notion of optimal-

ity with respect to the system’s goal (i.e., reward models), required

for DeepRL. Therefore, we must inquiry the appropriateness of

such techniques to assess DeepRL.

3 DEEP REINFORCEMENT LEARNING

Reinforcement Learning (RL) learns optimal actions for specific

environment conditions by trial-and-error required to maximize

the long term cumulative reward [9].

At each time step t , an agent perceives the environment’s state

st from state space S. The agent, then selects an action at for the
available action set A. The agent receives a reward rt = R(st ,at )
when it transitions to the state st+1. The discount factor γ ∈ [0,

1] is applied to the future rewards. One of most widely used RL

techniques is Q-Learning [16], in which an RL agents learn Q-values,

i.e., quality of taking an action in a given state: Q: S x A→ R. Thus,
the learning policy is represented as:

π (s) = argmax

a∈A
Q(s,a) (1)

Q(s,a) = (1 − α)Q(s,a) + α[R(s,a) +max

a∈A
Q(s ′,a′)] (2)

where 0 , < ,α ≤ 1 is a learning rate.

In situations with a large state and action spaces it is unfeasible

to learn Q-value estimates for each state-action pair independently

as in standard tabular Q-Learning. Mnih et al. [6] propose Deep

Q-Networks (DQN) as a technique to combine Q-Learning with

CNN. DQN parameterizes an approximate value functionQ(s,a;θi )
where θi are the weights of the network at iteration i . The experi-
ence replay stores the agent’s experiences et = (st , at , rt , st+1) at

each time step t in a dataset Dt = {e1, . . . , et } pooled over many

episodes into a replay memory. Mini batches of experience are

drawn at random from the dataset (s,a, r , s) ∼ U (D), and applied as

Q-updates during the training. The Q-learning update at iteration i
uses the following loss function:

Li (θi ) = E(s,a,r,s)∼U (D)

[(
r + γ max

a′
Q
(
s ′,a′;θ−i

)
−Q (s,a;θi )

)
2

]
where the θi are the Q-network parameters at iteration i and θ−i

are the target network parameters.

4 EMPIRICAL STUDY DESIGN

The goal of this preliminary study is to analyze the neuron cov-

erage in a DeepRL system from different perspectives than those

explored in existing DNN testing. We are interested in analyzing

the evolution of neuron coverage at the (1) DeepRL system level

and (2) neural network layer levels, and their correlation with cumu-

lative environment reward (as reward is a feature that distinguishes

DeepRL from DNN systems). This study uses two different models

of DeepRL system implemented for solving a widely used bench-

mark problem in the DeepRL community (i.e., mountain car). In

particular, this study addresses the following research questions

(RQs):

RQ1 Is there a difference in the evolution patterns of neuron cover-
age for the different layers in a DeepRL system? The goal of
this RQ is to understand whether neuron coverage evolves

differently for each of the layers in a DeepRL system.

RQ2 Is there a correlation between neuron coverage and cumulative
rewards in DeepRL systems? The purpose with this RQ is to

investigate whether there is a relationship between higher

cumulative rewards and higher coverage. Moreover, it could

indicate how to select parameters during training, so we can

manipulate coverage and obtain better rewards.

4.1 The Mountain Car Benchmark

The mountain car (MC) is a classic problem in RL [9]. In this prob-

lem, a car is positioned at the bottom of a valley between two

mountains, and the engine of the car is not powerful enough to

climb the mountain at the right and reach the goal at the mountain

top. Hence, it is necessary to go back and forth between the two

mountains to gain enough energy. The car’s state is defined by its

x-coordinate position and velocity.

At each time step, MC can take one of the three available actions:

accelerate towards left, neutral/no acceleration, accelerate towards

right. Its position is bounded by the coordinates [−1.2, 0.6] and

velocity by [−0.07, 0.07].

The reward is received at each time step for MC being in a state

(x ,v) and is defined as expressed in Equation (3).

R(x ,v) =

{
10, if x ≥ 0.5

-1, otherwise

(3)

We used in this study DeepRL-based models for MC because

they (1) have been widely studied by the DeepRL community, and

(2) there are numerous open source models that allow us to focus on

the models’ execution and evaluation. Thus, we selected two of such

DeepRL-based models. Here in after we will refer to the models
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asModel A
1
andModel B.

2
Both of these models use DQNs, but

with different neural network architectures. Model A, shown in

Figure 1a, takes as input the state before and after performing an

action. The initial state is used as previous and next state, in the

first input. Model A uses four hidden layers, where layer two is

flatten (i.e., it maps exactly layer one).Model B (Figure 1b), takes

as input only a state, and uses two dense hidden layers. Note that

both models use a dense output layer with three neurons.

(a) Model A (b)Model B

Figure 1: Network architecture of Model A andModel B

Model training and testing. Both models share the main struc-

ture for training and testing. Model A originally did not adjust

the environment reward when the car reached the goal, which

resulted in MC never learning how to reach the goal (i.e., climb

the mountain in maximum 200 steps) . Therefore, we modified the

original source code of Model A to use the same reward model as

Model B as outlined above. ModifyingModel A allow us to run

the experiments with same criteria, and analyze across different

architectures.

The models were trained and tested in sequences of iterations,

episodes, and stages. An iteration i is a step or an action performed

on the environment, and an episode e is a set of at most 200 itera-

tions. A stage is a training - testing fold with 1000 training episodes

and 20 testing episodes for each training episode in which the goal

was achieved; i.e., if all the training episodes of a stage achieve the

problem goal, then, this stage will have 20k testing episodes. For

this study, we used 5 stages.

A training iteration includes feeding the model with a batch of

32 inputs with the target output adjusted following Equation (2).

The models use α = 0.001 (learning rate), and γ = 0.99 (discount

factor) as parameters. To balance exploration and exploitation, both

models use a decaying ϵ-greedy method in which ϵ starts at 1 and

decays 0.05 after each episode. The minimum value of ϵ is 0.01.

1
https://github.com/branavg/Deep-Q-learning

2
https://github.com/pylSER/Deep-Reinforcement-learning-Mountain-Car

4.2 Analysis Method

During training and testing of DeepRL systems, we record the

activated neurons for each iteration and episode. Thus, given a

system s , a layer l ∈ s , and a neuron n ∈ N s
l , the set of neurons, the

activation of n for a given iteration i and episode e is denoted by the
indicator function λ(n, i, e), returning 1 if the neuron is activated,

and 0 otherwise. We denote |s | as the total number of neurons in

the system s , and |l | as the total number of neurons in layer l .
By collecting λ for each layer, episode, and iteration, at any

moment during training or testing we can compute metrics at dif-

ferent levels (i.e., systems, and layers) and showing cumulative or

snapshot-based (i.e., at a given moment) results:

Neuron Coverage (NC): total number of neurons activated at a

given iteration i and episode e divided the total number of neurons

of the system s . Then, or a system s with L layers

NC(s, i, e) =

∑
l ∈L

∑
n∈N s

l
λ(n, i, e)

|s |

Neuron Layered Coverage (NLC): total number of neurons of

system s activated at layer l given iteration i and episode e divided
the total number of neurons of the layer l , computed as

NLC(s, l , i, e) =

∑
n∈N s

l
λ(n, i, e)

|l |

Cumulative Neuron Coverage (CNC): total number of unique

neurons activated until a given iteration i∗ and episode e∗ divided
the total number of neurons of the system s . To do this, we require

to compute the set of neurons that have not been activated until

the iteration i∗ and episode e∗; we denote this set by N̂ (s, e∗, i∗).
CNC is defined as

CNC(s, e∗, i∗) =

∑
e≤e∗

∑
i≤i∗

∑
n<N̂ (s,e∗,i∗) λ(n, i, e)

|s |

Cumulative Neuron Layered Coverage (CNLC): total number

of unique neurons of a layer l∗ activated until a given iteration i∗

and episode e∗ divided the total number of neurons of the layer l∗.
To do this, we require to compute the set of neurons that have not

been activated until the iteration i∗ and episode e∗ in a given layer

l∗; we denote this set by N̂ (s, e∗, i∗, l∗). CNLC is defined as

CNLC(s, e∗, i∗, l∗) =

∑
e≤e∗

∑
i≤i∗

∑
n<N̂ (s,e∗,i∗,l ∗) λ(n, i, e)

|l∗ |

To answer RQ1, we use CNC and CNCL, as these metrics show

all the neurons that are activated over the time (i.e., count neurons
activated on a past iteration or episode). Therefore, it is a simple

way to observe evolution in coverage. We calculate these metrics

in the models during training and testing phases. Then, we built

time series with the values for each metric (i.e., NLC and CNLC ),

and computed the descriptive statistics for each layer.

To answer RQ2, we computed the Pearson and Spearman cor-

relation coefficients between the coverage metrics (i.e., NC and

NLC) and the cumulative rewards values for both models, with the

purpose of identifying whether there are relationships (linear or

monotonic) between coverage and cumulative rewards.

https://github.com/branavg/Deep-Q-learning
https://github.com/pylSER/Deep-Reinforcement-learning-Mountain-Car
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To record the neuron activation of hidden layers we used the

functional API of Keras which allows us to define a model with

multiple outputs and obtain all values from layers.
3

5 RESULTS

To answerRQ1 andRQ2 for bothmodels we executed 5 stages, with

1000 training episodes each, with at most 200 iterations per episode.

The experiments were executed on a macOS Catalina V10.15.2 with

16 GB of RAM and a six core 2.2 GHz Intel core i7 processor.We used

the libraries Keras (v2.2.4), Tensorflow (v1.15.0), Gym
4
(v0.15.4),

and NumPy (v1.17.4) to obtain and manipulate the data.

5.1 Evolution Patterns of Neuron Coverage

Figures 2 and 3 depict the distribution of CNC and CNLC for both

models over several executions; average values are reported with a

triangle shape. CNC is reported as network-coverage and individual

CNLCs are reported as layer-x-coverage.

Training phase. On average, 95% and 86% of neurons were

activated across the training episodes forModel A andModel B,

correspondingly. InModel A, all the layers were able to execute all

of their neurons during training. Across the shown executions, on

average, the layers with the top cumulative coverage were layers

1-2 (97%) and layer 4 (90%). InModel B, layers 1 and 3 were able to

execute all of their neurons during training. Layer 1, on average,

achieved the top cumulative coverage (99%) followed by layer 3

(88%). Layer 5 in Model A reported the lower average cumulative

coverage (80%) from the two models despite having only 3 neurons,

showing that having less neurons does not necessarily result in

higher cumulative coverage.

When looking into the details of the CNLC series, the series are

less stable in Model A, i.e., the behavior is less consistent in terms

of the number of iterations required to activate all of the neurons in

a layer and range of values. All the neurons from Input and Output

layers inModel B are activated quicker than inModel A; however,

this is the opposite for the hidden layers in Model B, where the

progression is (in general) slower than inModel A.

Testing phase. In both models, we can see a reduction in the

cumulative coverage at the layer and network levels. In the case of

Model A, there is a reduction of 45% on the average cumulative

coverage of the network; at the layers level the reduction is 42%

on average. For Model B, the reduction at the network level is

30%, and 25% at the layers level on average. In both cases, only

the output layers were able to activate all their neurons. While

Model A executes 37,260 episodes with a success rate (i.e., the car
climbed the mountain) of 42%,Model B executes 74,240 episodes

with a success rate of 77%. Note that there are 20 testing episodes

for each training episode in which the problem goal was achieved.

Our first insight here is that Model A, despite having better

cumulative coverage during training, has a lower success rate and

lower cumulative coverage during testing –that is, better coverage

in training does not necessarily mean better coverage in testing.

Additionally, the evolution patterns of cumulative coverage during

training are not necessarily the same during testing.

3
https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-

intermediate-layer

4
https://gym.openai.com/

Figure 2: Distribution of cumulative coverage for Model A

during the training and testing phases

5.2 Coverage-Reward Correlation

Figure 4 shows network (NC) and layered (NLC) coverage for each

of the models (due to space restrictions, we depict three represen-

tative stages out of the total of five). We can observe that neuron

coverage behavior for the last network layer is erratic across the

different runs for both models. For the first two presented stages

of Model A, the coverage in the first layer is higher than that of

the following layers. The third stage, however, flips such behavior,

showing a higher coverage in the layers towards the end of the net.

In this case, layer_4, has the least coverage of all runs (under 25% ex-

cept for a peak around episode 600). The behavior of flatten layer_2

corresponds exactly to layer_1 and is therefore not displayed in the

figure. Model B, presents similar results. Earlier net layers have a

higher coverage than later layers, across all episodes. Again, the

behavior of the last layer is erratic. Nonetheless, in this model we

observe that towards the last episodes, the coverage of the last layer

converges to the network coverage.

In comparing the reward (Figure 5) obtained for each of the

models with their corresponding coverage, we observe that the

shape of the last layer’s coverage is similar to the shape of the

reward, as if the success of the mountain car would be associated

to the coverage of the last layer of the model.

To evaluate this last observation, we calculate the correlation

between coverage and reward. Both Pearson and Spearman corre-

lation metrics show negative correlations. In the case of, NC the

Pearson correlation is of −0.06 forModel A and −0.56 forModel B.

https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate-layer
https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate-layer
https://gym.openai.com/


Does Neuron Coverage Matter for Deep Reinforcement Learning? A Preliminary Study DeepTest 2020, South Korea, Co-Located with ICSE’20

Figure 3: Distribution of cumulative coverage for Model B

during the training and testing phases

The Spearman correlation is respectively of −0.07 and −0.56; as

the coverage in Model B is higher than that of Model A. NLC’s

correlation presents similar results in a higher range. In the case of

Model A, the Pearson correlation is in the range [−0.36, 0.02], with

a higher correlation for the first layer, and a lower correlation for

the third one. The Spearman correlation is in the range [−0.38, 0.06]

presenting a similar behavior. Model B shows a similar correla-

tion for both Pearson [−0.62,−0.12] and Spearman [−0.65,−0.04],

where the highest correlation is in the first layer and the lowest in

the middle layer.

6 CONCLUSION & FUTUREWORK

The advent of Deep Neural Network (DNN) has brought a special

focus to Machine Learning (ML) algorithms and software devel-

opment. Recently, testing of ML, and in particular DNNs, is being

used as a means to understand and assure the quality of DNN-

based software systems. This paper presents a first study in testing

a particular type of DNN-based ML systems, namely, DeepRL. In

particular, we study the use of neuron coverage as reliable white-

box testing technique for DeepRL systems.

Our results, in contrast to neuron coverage in DNNs, show that

neuron coverage is not sufficient to reach substantial conclusions

about the design or structure of DeepRL networks. In particular,

the negative correlation, or lack there of, obtained in our results

confirms the expected behavior of Deep Q-networks. The best

possible coverage is achieved by extensive exploration, however,

this leads to exploring multiple actions that do not contribute in

reaching the objective, and present a negative reward. Therefore, for

the case of DeepRL, neuron coverage seems to assess state space

exploration for the earlier layers of the network, as a means of

exploring different actions.

As future work, the evaluation of neuron coverage as adequacy

metric should be extended to other DeepRL scenarios to consolidate

the validity of our results, in exploring for ametric that can correlate

coverage and maximize reward. Additionally, a similar approach

could be used to evaluate other DNN-based learning models, as

means to evaluate the applicability of coverage testing to ML.
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Figure 4: Neuron coverage per episode for the two models
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